Grade 6 Math Circles
 November 7/8/9, 2023 Inequalities and Absolute Values - Problem Set

1. Place a $<,>$, or a number in each blank to make the inequality true.
(a) 14 \qquad 20
(c) $|-19| \ldots|-3|$
(e) $2-5$ \qquad $|2-5|$
(b) $|-14|>$ \qquad
(d) $|2 \times(-4)|<$ \qquad
(f) $|x|$ \qquad -1
2. The city is planning the finances of the buildings they need to construct. They know:

- Ice rinks are more expensive than apartments.
- Garages are less expensive than houses.
- Houses are less expensive than apartments.

Write a single compound inequality that lists the cost of constructing the buildings from least to greatest.
3. Evaluate the following expressions to a single integer or fraction. Ensure you follow the correct order of operations.
(a) $\frac{3 \times(2+4)}{3-1}$
(c) $-3 \div|-6-3 \times 3|$
(b) $2|1-4 \times 3|$
(d) $|10 \times(-2)(3)| \div(-|3-6|)$
4. Determine all values of x in the following mix of equations and inequalities.
(a) $2 x+10=-2$
(c) $\frac{9}{2} x-\frac{5}{2} x-7=1$
(e) $|x+1|<5$
(b) $2-x>1$
(d) $|(-4)(-2)(x) \div 8|=48$
(f) $|x-2|>6$
5. (a) Try you find a value for x such that $|x-2|=-1$?

If you find a number, substitute it back into the orignal equation to check if it is correct.
If you cannot find a number, explain why!
(b) Find all values of x such that $|x-2|>-1$.
6. Complete the following HANGMAN activity that tests most of the skills you learned today!

WHAT IS NEXT WEEK'S TOPIC?

A	B	C	E	I
$5 x-3 x+1=2$	$x+5>2 x+1$	$\|x-1\|>4$	$x+7<2 x-3$	$\|x+7\|<2$
L	M	N	O	P
$x=\|2+7 \times 6\|-1$	$3 x-5<5 x+1$	$\|2 x+1\|=-4$	$-3.5 x+7>1.5 x$	$2 x+1=0$
R	T	U	Y	
$\|x+4\|=9$	$2 x=\|4-10\|$	$2 x+7=2$	$9 \times 3+2 x \geq x-1$	$x^{2}-1=0$

7. What do you think the symbols \leq and \geq mean?
8. Combine the following inequalities with an "and" or an "or".
(a) $x<3, x>5$
(b) $x>-4, x<10$
(c) $x>7, x>-3, x<4$

9. CHALLENGE QUESTION

The goal for this question is to solve an inequality with multiplication inside the absolute value, instead of just addition or subtraction.
(a) Remember that both $|9|=9$ and $|-9|=9$. Use this to determine all values of x such that $|2 x-2|=9$ and label them on a number line.
(b) Determine all values of x such that $|2 x-2|<9$ and label them on a number line. Part (a) should help with this.
(c) Use the same steps/ideas from part (a) and (b) to determine all values of x such that $|4 x+8|>12$.

